Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 666
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2817-2827, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629544

RESUMO

Exploring the spatial distribution of land use/coverage (LUCC) and ecosystem carbon reserves in the future of climate change can provide a scientific basis for optimizing the distribution of land resources and formulating social economic sustainable development policies. In this study, we integrated the plaques generating land use simulation (PLUS) model and ecosystem services and weighing comprehensive evaluation (InVEST) model. Based on the CMIP6-based sharing socio-economic path and representative concentration path (SSP-RCP), we evaluated the Loess Plateau for time and space dynamic changes in LUCC and ecosystem carbon reserves, analyzed the impact of driving factors on different regions, and explored the correlation between carbon reserves in various regions. The results showed:① In the future, the three scenarios were similar to the LUCC changes. The area of cultivated land, grassland, and unused land would be reduced to varying degrees, and the construction land had expanded sharply. The increase in the three scenarios was 29.23%-53.56% (SSP126), 34.59%-63.28% (SSP245), and 42.80%-73.27% (SSP585). ② Compared with that in 2020, the carbon reserves of SSP126 sites in 2040 increased by 1.813 8×106 t, and in the remaining scenarios it would continue to decline. By 2060, the grassland carbon reserves in the three scenarios decreased by 13.391×106, 33.548×106, and 85.871×106 t, respectively. ③ From the perspective of space correlation, the carbon reserves of the Loess Plateau were correlated between cities. The difference in future scenarios was not significant. The hotspots were distributed in the middle and north of the research area. There was no obvious cold spot area. ④ The changes in land use were predicted to increase or lose carbon reserves. Forestry, cultivated land, and grassland had more carbon reserves those in than other land types. Increasing their area and restrictions on the conversion of other land types should increase the ecosystem carbon reserves.

2.
Sci Total Environ ; 928: 172354, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614330

RESUMO

Escalation of ecological concern due to biodegradable plastics has attracted the attention of many contemporary researchers. This study searched to investigate the acute and sub-chronic toxicity of polylactic acid (PLA) and polybutyleneadipate-co-terephthalate (PLA-PBAT) bio-microplastics on 3-month-old zebrafish to elucidate their potential toxic mechanisms. Acute toxicity assessments revealed 96 h-LC50 value of 12.69 mg/L for PLA-PBAT. Sub-chronic exposure of over 21 days revealed deviations in critical behavioral patterns and physiological indicators. In treated groups, weight gain and specific growth rates were significantly lower than those obtained for the control group, such that high doses induced significant reductions in total organ coefficient (p < 0.05). A positive correlation was observed between zebrafish mortality and increased doses. Detailed behavioral evaluations revealed a dose-dependent decrease in the speed and range of swimming, along with modifications in shoaling behavior, anxiety-like responses, and avoidance behaviors. Brain tissues transcriptomic analyses revealed the molecular responses underlying sub-chronic exposure to PLA-PBAT. Totally 702 DEGs and 5 KEGG pathways were significantly identified in low-dose group, with the top 2 significant pathways being ribosome pathway and cytokine-cytokine receptor interaction pathway. Totally 650 DEGs and 5 KEGG pathways were significantly identified in medium-dose group, with the top 2 significant pathways being Herpes simplex virus 1 infection pathway and complement and coagulation cascades pathway. Totally 1778 DEGs and 16 KEGG pathways were significantly identified in high-dose group, with the top 2 significant pathways being metabolism of xenobiotics by cytochrome P450 and drug metabolism - cytochrome P450 pathway. Most significantly enriched pathways are associated with immune responses. The validation of key gene in cytokine-cytokine receptor interaction pathway also confirmed its high correlation with behavioral indicators. These results indicate that PLA-PBAT is likely to cause behavioral abnormalities in zebrafish by triggering immune dysregulation in the brain.

3.
BMC Cancer ; 24(1): 507, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654231

RESUMO

BACKGROUND: Circulating tumor cell (CTC) clusters play a critical role in carcinoma metastasis. However, the rarity of CTC clusters and the limitations of capture techniques have retarded the research progress. In vitro CTC clusters model can help to further understand the biological properties of CTC clusters and their clinical significance. Therefore, it is necessary to establish reliable in vitro methodological models to form CTC clusters whose biological characteristics are very similar to clinical CTC clusters. METHODS: The assays of immunofluorescence, transmission electron microscopy, EdU incorporation, cell adhension and microfluidic chips were used. The experimental metastasis model in mice was used. RESULTS: We systematically optimized the culture methods to form in vitro CTC clusters model, and more importantly, evaluated it with reference to the biological capabilities of reported clinical CTC clusters. In vitro CTC clusters exhibited a high degree of similarity to the reported pathological characteristics of CTC clusters isolated from patients at different stages of tumor metastasis, including the appearance morphology, size, adhesive and tight junctions-associated proteins, and other indicators of CTC clusters. Furthermore, in vivo experiments also demonstrated that the CTC clusters had an enhanced ability to grow and metastasize compared to single CTC. CONCLUSIONS: The study provides a reliable model to help to obtain comparatively stable and qualified CTC clusters in vitro, propelling the studies on tumor metastasis.


Assuntos
Neoplasias da Mama , Técnicas de Cultura de Células , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patologia , Animais , Neoplasias da Mama/patologia , Humanos , Camundongos , Feminino , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Metástase Neoplásica
4.
Asia Pac J Oncol Nurs ; 11(3): 100368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38426045

RESUMO

Effectively addressing the challenges posed by relapsed and refractory diffuse large B-cell lymphoma, particularly when employing autologous hematopoietic stem cell transplantation and CAR-T therapy, requires a comprehensive approach to treatment and nursing. This case report emphasizes a nursing strategy focused on managing neurotoxicity post-CAR-T therapy. Nursing interventions include the identification of neurotoxicity symptoms, neuropsychiatric management, careful support during lumbar puncture and intrathecal administration, psychological assistance, and adaptive nutritional guidance. The diligent application of treatment and nursing care resulted in a remarkable recovery for the patient, as evidenced by the alleviation of central facial paralysis, improvement in swallowing function (from Grade 4 to Grade 2), and enhanced vocalization. Consistent and specialized nursing care is paramount for effectively managing complications, especially neurotoxicity, in patients undergoing CAR-T therapy. A thorough monitoring of symptoms and personalized care contribute to optimizing treatment outcomes and ensuring patient safety.

5.
Int J Biol Macromol ; 265(Pt 2): 130822, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521337

RESUMO

Ulcerative colitis (UC) is regarded as a recurring inflammatory disorder of the gastrointestinal tract, for which treatment approaches remain notably limited. In this study, we demonstrated that ginseng polysaccharides (GPs) could alleviate the development of dextran sulfate sodium (DSS)-induced UC as reflected by the ameliorated pathological lesions in the colon. GPs strikingly suppressed the expression levels of multiple inflammatory cytokines, as well as significantly inhibited the infiltration of inflammatory cells. Microbiota-dependent investigations by virtue of 16S rRNA gene sequencing, antibiotic treatment and fecal microbiota transplantation illustrated that GPs treatment prominently restored intestinal microbial balance predominantly through modulating the relative abundance of Lactobacillus. Additionally, GPs remarkably influenced the levels of microbial tryptophan metabolites, diminished the intestinal permeability and strengthened intestinal barrier integrity via inhibiting the 5-HT/HTR3A signaling pathway. Taken together, the promising therapeutic potential of GPs on the development of UC predominantly hinges on the capacity to suppress the expression of inflammatory cytokines as well as to influence Lactobacillus and microbial tryptophan metabolites.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Panax , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Triptofano , RNA Ribossômico 16S , Citocinas , Sulfato de Dextrana , Modelos Animais de Doenças , Colo , Camundongos Endogâmicos C57BL
6.
Chemosphere ; 355: 141744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522669

RESUMO

Pesticides pollute natural water reservoirs through persistent accumulation. Therefore, their toxicity and degradability are serious issues. Carbendazim (CBZ) is a pesticide used against fungal infections in agricultural crops, and its overexploitation detrimentally affects aquatic ecosystems and organisms. It is necessary to design a logical, efficient, and field-deployable method for monitoring the amount of CBZ in environmental samples. Herein, a nano-engineered bismuth selenide (Bi2Se3)/functionalized carbon nanofiber (f-CNF) nanocomposite was utilized as an electrocatalyst to fabricate an electrochemical sensing platform for CBZ. Bi2Se3/f-CNF exhibited a substantial electroactive surface area, high electrocatalytic activity, and high conductivity owing to the synergistic interaction of Bi2Se3 with f-CNF. The structural chemical compositions and morphology of the Bi2Se3/f-CNF nanocomposite were confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). Electrochemical analysis was carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The voltammetry and impedance experiments exposed that the Bi2Se3/f-CNF-modified GCE has attained adequate electrocatalytic function with amended features of electron transportation (Rct = 35.93 Ω) and improved reaction sites (0.082 cm2) accessible by CBZ moiety along with exemplary electrochemical stability (98.92%). The Bi2Se3/f-CNF nanocomposite exhibited higher sensitivity of 0.2974 µA µM-1cm-2 and a remarkably low limit of detection (LOD) of 1.04 nM at a broad linera range 0.001-100 µM. The practicability of the nanocomposite was tested in environmental (tap and pond water) samples, which supports excellent signal amplification with satisfactory recoveries. Hence, the Bi2Se3/f-CNF nanocomposite is a promising electrode modifier for detecting CBZ.


Assuntos
Benzimidazóis , Bismuto , Carbamatos , Carbono , Nanofibras , Compostos de Selênio , Carbono/química , Nanofibras/química , Ecossistema , Água , Técnicas Eletroquímicas/métodos , Eletrodos
7.
J Hazard Mater ; 469: 133861, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430596

RESUMO

Microplastics have garnered global attention due to their potential ecological risks. Research shows micro/nano-plastics pollution has adverse effects on plant growth, development, and physiological characteristics. However, the mechanisms underlying these effects remain unclear. The study examined the effects of polystyrene micro/nano-plastics with varying sizes and concentrations on different physiological and biochemical markers of A. thaliana. The indicators assessed include seed viability, growth, chlorophyll content, accumulation of root reactive oxygen species, and root exudates. Using fluorescence labeling, we investigated the absorption and translocation processes of micro/nano-plastics in A. thaliana. We also performed transcriptomic analysis to better understand the particular mechanisms of micro/nano-plastics. It indicated that micro/nano-plastics had an adverse effect on seed germination, especially under high concentration and small particle size treatments. This effect diminished with prolonged exposure. High concentrations at 50 nm and 100 nm treatment groups significantly inhibited the growth. Conversely, low concentrations of 1000 nm had a promoting effect. Exposure to micro/nano-plastics potentially resulted in decreased chlorophyll content, the accumulation of H2O2 in roots, and stimulated root secretion of oxalic acid. Through transcriptomic analysis, the gene expression linked to micro/nano-plastic treatments of varying sizes enriched multiple metabolic pathways, impacting plant growth, development, environmental adaptation, metabolism, pigment synthesis, and stress response.


Assuntos
Arabidopsis , Poliestirenos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio , Clorofila
8.
Chin Med ; 19(1): 45, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454519

RESUMO

BACKGROUND: Cutaneous melanoma is a kind of skin malignancy with low morbidity but high mortality. Cryptotanshinone (CPT), an important component of salvia miltiorrhiza has potent anti-tumor activity and also indicates therapeutic effect on dermatosis. So we thought that CPT maybe a potential agent for therapy of cutaneous melanoma. METHODS: B16F10 and A375 melanoma cells were used for in vitro assay. Tumor graft models were made in C57BL/6N and BALB/c nude mice for in vivo assay. Seahorse XF Glycolysis Stress Test Kit was used to detect extracellular acidification rate and oxygen consumption rate. Si-RNAs were used for knocking down adenosine monophosphate-activated protein kinase (AMPK) expression in melanoma cells. RESULTS: CPT could inhibit the proliferation of melanoma cells. Meanwhile, CPT changed the glucose metabolism and inhibited phosphofructokinase (PFK)-mediated glycolysis in melanoma cells to a certain extent. Importantly, CPT activated AMPK and inhibited the expression of hypoxia inducible factor 1α (HIF-1α). Both AMPK inhibitor and silencing AMPK could partially reverse CPT's effect on cell proliferation, cell apoptosis and glycolysis. Finally, in vivo experimental data demonstrated that CPT blocked the growth of melanoma, in which was dependent on the glycolysis-mediated cell proliferation. CONCLUSIONS: CPT activated AMPK and then inhibited PFK-mediated aerobic glycolysis leading to inhibition of growth of cutaneous melanoma. CPT should be a promising anti-melanoma agent for clinical melanoma therapy.

9.
Plants (Basel) ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38498535

RESUMO

Qinting Lake Park has effectively imported Rhododendron varieties from Zhejiang Province. The analytic hierarchy process was employed to devise an evaluation framework to evaluate the ornamental and adaptive features of these species. Subsequently, we conducted a standardized evaluation of 24 species for their ornamental and adaptive traits under controlled cultivation conditions. The findings indicated that the percentage of ornamental flowers in the first-level index was significantly greater than the other two factors, indicating that the ornamental value of flowers was the most important in the evaluation of Rhododendron ornamental value. Among the secondary indicators, the proportion of flower color and flower weight was significantly higher than that of other factors, which had the greatest impact on the evaluation results. The 24 Rhododendron species were classified into two grades based on their ornamental value, as determined by index weights and scoring standards. Rhododendron 'Xueqing', Rhododendron 'Big Qinglian', and Rhododendron 'Jinyang No. 9' exhibited superior ornamental value and demonstrated more favorable suitability for garden applications.

10.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473926

RESUMO

Since its inception, induced pluripotent stem cell (iPSC) technology has been hailed as a powerful tool for comprehending disease etiology and advancing drug screening across various domains. While earlier iPSC-based disease modeling and drug assessment primarily operated at the cellular level, recent years have witnessed a significant shift towards organoid-based investigations. Organoids derived from iPSCs offer distinct advantages, particularly in enabling the observation of disease progression and drug metabolism in an in vivo-like environment, surpassing the capabilities of iPSC-derived cells. Furthermore, iPSC-based cell therapy has emerged as a focal point of clinical interest. In this review, we provide an extensive overview of non-integrative reprogramming methods that have evolved since the inception of iPSC technology. We also deliver a comprehensive examination of iPSC-derived organoids, spanning the realms of the nervous system, cardiovascular system, and oncology, as well as systematically elucidate recent advancements in iPSC-related cell therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Terapia Baseada em Transplante de Células e Tecidos , Diferenciação Celular
11.
J Agric Food Chem ; 72(10): 5358-5367, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427033

RESUMO

Genome editing tools based on SpCas9 and FnCpf1 have facilitated strain improvements for natural product production and novel drug discovery in Streptomyces. However, due to high toxicity, their editing requires high DNA transformation efficiency, which is unavailable in most streptomycetes. The transformation efficiency of an all-in-one editing tool based on miniature Cas nuclease AsCas12f1 was significantly higher than those of SpCas9 and FnCpf1 in tested streptomycetes, which is due to its small size and weak DNA cleavage activity. Using this tool, in Streptomyces coelicolor, we achieved 100% efficiency for single gene or gene cluster deletion and 46.7 and 40% efficiency for simultaneous deletion of two genes and two gene clusters, respectively. AsCas12f1 was successfully extended to Streptomyces hygroscopicus SIPI-054 for efficient genome editing, in which SpCas9/FnCpf1 does not work well. Collectively, this work offers a low-toxicity, high-efficiency genome editing tool for streptomycetes, particularly those with low DNA transformation efficiency.


Assuntos
Edição de Genes , Streptomyces , Sistemas CRISPR-Cas , Streptomyces/genética , DNA
12.
Int J Biol Macromol ; 261(Pt 2): 129857, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307438

RESUMO

The application of CO2 supercritical fluid (SCF) technology has developed rapidly because of its non-toxic, environmentally friendly, mild reaction conditions and safety. The SCF technology can effectively speed up the reaction process of nano-material synthesis, and maintains a high degree of controllability and repeatability. This study mainly included carboxymethyl chitosan sodium salt (CCS), citral (CT), p-coumaric acid (CA), and ZnSO4 as raw materials to prepare CCS-CT-CA-Zn complex as a pH-responsive agent and was investigated using supercritical fluid technique. The coordination structure of Bridge-CCS-CT-CH3COO-CA-Zn-Schiff base/OH and the morphology of the complex agents were verified. The prepared CCS-CT-CA-Zn complex showed good dispersion and uniformity (mean size: 852 ± 202 nm, PdI: 0.301, and mean zeta potential: -31 ± 6 mV). Also, it has a good pH responsive release in an acid environment. Besides, both of CCS-CT-CA-Zn complex (DS-B) and its decomposed mixture in acid (DS-A) demonstrated significant antioxidant and anti-vibrio activity. Moreover, both DS-B complex and DS-A mixture inhibited biofilm formation, swimming, and swarming motilities of V. parahaemolyticus in a dose-dependent manner. This work will provide a scientific basis for the further design and development of natural products derived antibacterial-antioxidant complex agents, food additives and feed additives.


Assuntos
Monoterpenos Acíclicos , Quitosana , Quitosana/farmacologia , Quitosana/química , Zinco/química , Bases de Schiff/farmacologia , Bases de Schiff/química , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Concentração de Íons de Hidrogênio
14.
Environ Toxicol ; 39(5): 2927-2936, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303669

RESUMO

Macrophages play an important role in defending the body against invading pathogens. In the face of pathogens, macrophages become activated and release toxic materials that disrupt the pathogens. Macrophage overactivation can lead to severe illness and inflammation. Wogonin has several therapeutic effects, including anti-inflammatory, anticancer, antioxidant, and neuroprotective effects. No studies have investigated the cytotoxic effects of wogonin at concentrations of more than 0.1 mM in RAW264.7 cells. In this study, RAW 264.7 cells were treated with wogonin, which, at concentrations of more than 0.1 mM, had cytotoxic and genotoxic effects in the RAW264.7 cells, leading to apoptosis and necrosis. Further, wogonin at concentrations of more than 0.1 mM induced caspase-3, caspase-8, and caspase-9 activation and mitochondrial dysfunction and death receptor expression. These results suggest that wogonin induces apoptosis through upstream intrinsic and extrinsic pathways by exhibiting cytotoxic and genotoxic effects.


Assuntos
Apoptose , Flavanonas , Flavanonas/farmacologia , Macrófagos , Dano ao DNA
15.
Environ Toxicol ; 39(5): 2970-2979, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38314619

RESUMO

Cyclizine, an over-the-counter and prescription antihistamine, finds widespread application in the prevention and treatment of motion sickness, encompassing symptoms such as nausea, vomiting, dizziness, along with its effectiveness in managing vertigo. However, the overuse or misuse of cyclizine may lead to hallucinations, confusion, tachycardia, and hypertension. The molecular mechanisms underlying cyclizine-induced cytotoxicity and apoptosis remain unclear. During the 24 h incubation duration, RAW264.7 macrophages were exposed to different concentrations of cyclizine. Cytotoxicity was assessed through the lactate dehydrogenase assay. Flow cytometry employing annexin V-fluorescein isothiocyanate and propidium iodide was utilized to evaluate apoptosis and necrosis. Caspase activity and mitochondrial dysfunction were evaluated through a fluorogenic substrate assay and JC-1 dye, respectively. Flow cytometry employing fluorogenic antibodies was utilized to evaluate the release of cytochrome c and expression of death receptor, including tumor necrosis factor-α receptor and Fas receptor. Western blotting was utilized to evaluate the expression of the Bcl2 and Bad apoptotic regulatory proteins. The findings unveiled from the present study demonstrated that cyclizine exerted a concentration-dependent effect on RAW264.7 macrophages, leading to the induction of cytotoxicity, apoptosis, and necrosis. This compound further activated the intrinsic apoptotic pathway by inducing mitochondrial dysfunction, Bcl2/Bad exchange expression, cytochrome c liberation, and activation of caspases contained caspase 3, 8, and 9. Moreover, the activation of the extrinsic apoptotic pathway was observed as cyclizine induced the upregulation of death receptors and increased caspase activities. Based on our investigations, it can be inferred that cyclizine prompts cytotoxicity and apoptosis in RAW264.7 macrophages in a concentration-dependent manner by triggering both the intrinsic and extrinsic apoptotic pathways.


Assuntos
Ciclizina , Doenças Mitocondriais , Humanos , Ciclizina/metabolismo , Ciclizina/farmacologia , Citocromos c/metabolismo , Mitocôndrias/metabolismo , Apoptose , Caspases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Macrófagos , Necrose/metabolismo , Doenças Mitocondriais/metabolismo
16.
Int J Biol Sci ; 20(3): 1110-1124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322116

RESUMO

At present, tumor metastasis still remains the leading contributor to high recurrence and mortality in cancer patients. There have been no clinically effective therapeutic strategies for treating patients with metastatic cancer. In recent years, a growing body of evidence has shown that the pre-metastatic niche (PMN) plays a crucial role in driving tumor metastasis. Nevertheless, a clear and detailed understanding of the formation of PMN is still lacking given the fact that PMN formation involves in a wealth of complicated communications and underlying mechanisms between primary tumors and metastatic target organs. Despite that the roles of numerous components including tumor exosomes and extracellular vesicles in influencing the evolution of PMN have been well documented, the involvement of cancer-associated fibroblasts (CAFs) in the tumor microenvironment for controlling PMN formation is frequently overlooked. It has been increasingly recognized that fibroblasts trigger the formation of PMN by virtue of modulating exosomes, metabolism and so on. In this review, we mainly summarize the underlying mechanisms of fibroblasts from diverse origins in exerting impacts on PMN evolution, and further highlight the prospective strategies for targeting fibroblasts to prevent PMN formation.


Assuntos
Fibroblastos Associados a Câncer , Exossomos , Vesículas Extracelulares , Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Microambiente Tumoral , Metástase Neoplásica/patologia
17.
J Mater Chem B ; 12(6): 1617-1623, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38270244

RESUMO

Hollow and porous plasmonic nanomaterials have been demonstrated for highly sensitive biosensing applications due to their distinctive optical properties. Immunosensors, which rely on antibody-antigen interactions, are essential constituents of diverse biosensing platforms owing to their exceptional binding affinity and selectivity. The majority of immunosensors and conventional bioassays needs special storage conditions and cold chain systems for transportation. Prostate-specific antigen (PSA), a serine protease, is widely employed in the diagnosis of prostate cancer. In this study, we present the successful utilization of a biopolymer-preserved plasmonic biosensor with improved environmental stability for the sensitive detection of PSA. The preserved plasmonic biosensors exhibited sustained sensitivity in the detection of PSA, achieving a limit of detection of 10 pg mL-1. Furthermore, these biosensors exhibited remarkable stability at elevated temperatures for one week.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Neoplasias da Próstata , Masculino , Humanos , Antígeno Prostático Específico , Imunoensaio , Nanoestruturas/química
18.
Br J Haematol ; 204(4): 1219-1226, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180132

RESUMO

Venetoclax (VEN) in combination with hypomethylating agents (HMAs) is considered the standard of treatment for individuals with newly diagnosed acute myeloid leukaemia (AML) who are ineligible for intensive chemotherapy. We conducted a retrospective analysis that encompassed 16 critically ill patients newly diagnosed with AML who were admitted to the intensive care unit (ICU) and received the VEN and HMA regimen. Among them, 13 were primary AML, and three were MDS-transformed AML. The mean Acute Physiology and Chronic Health Evaluation II (APACHE II) score was 18.9, and the mean sepsis-related organ failure assessment score (SOFA) was 6.2. The average length of the ICU stay was 27.3 days. The median duration of VEN administration was 16 days. After the first course of VEN + HMA, 12 cases (75%) achieved complete remission (CR) or CR with incomplete haematological recovery (CRi). Among the five patients harbouring TP53 mutations, the overall response rate (ORR) was 90%. All patients experienced grade 3-4 haematological adverse events (AEs). With a median follow-up of 9.5 months (range: 0.5-23), the overall survival (OS) rate was 43.75%. TP53-wild patients and CR state after the first course of VEN-HMA indicated better survival. The combination of VEN and HMA has demonstrated a significantly elevated therapeutic response rate in newly diagnosed AML patients with critical illness.


Assuntos
Estado Terminal , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Estudos Retrospectivos , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Leucemia Mieloide Aguda/genética , 60410 , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos
19.
Br J Pharmacol ; 181(2): 257-272, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36775813

RESUMO

Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) immune checkpoint blockade as a breakthrough in cancer immunotherapy has shown unprecedented positive outcomes in the clinic. However, the overall effectiveness of PD-L1 antibody is less than expected. An increasing number of studies have demonstrated that PD-L1 is widely distributed and expressed not only on the cell membrane but also on the inside of the cells as well as on the extracellular vesicles secreted by tumour cells. Both endogenous and exogenous PD-L1 play significant roles in influencing the therapeutic effect of anti-tumour immunity. Herein, we mainly focused on the distribution and function of PD-L1 and further summarized the potential targeted therapeutic strategies. More importantly, in addition to taking the overall expression abundance of PD-L1 as a predictive indicator for selecting corresponding PD-1/PD-L1 monoclonal antibodies (mAbs), we also proposed that personalized combination therapies based on the different distribution of PD-L1 are worth attention to achieve more efficient and effective therapeutic outcomes in cancer patients. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-H1 , Ligantes , Neoplasias/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
20.
Phytomedicine ; 123: 155180, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043385

RESUMO

BACKGROUND: One critical component of the immune system that prevents breast cancer cells from forming distant metastasis is natural killer (NK) cells participating in immune responses to tumors. Ginsenoside Rh2 (GRh2) as one of the major active ingredients of ginseng has been employed in treatment of cancers, but the function of GRh2 in modulating the development of breast cancer remains elusive. PURPOSE: This study was to dissect the effect of GRh2 against breast cancer and its potential mechanisms associated with NK cells, both in vitro and in vivo. METHODS: MDA-MB-231 and 4T1 cells were used to establish in situ and hematogenous mouse models. MDA-MB-231 and MCF-7 were respectively co-cultured with NK92MI cells or primary NK cells in vitro. Anti-tumor efficacy of GRh2 was verified by immunohistochemistry (IHC), Cell Counting Kit-8 (CCK8), high resolution micro-computed tomography (micro-CT) scanning of lungs and hematoxylin and eosin (H&E) staining. Lactate dehydrogenase (LDH) cytotoxicity assay, flow cytometry, in vivo depletion of NK cells, enzyme-linked immunosorbent assay (ELISA), western blot, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunofluorescence and cell transfection were performed for investigating the anti-tumor mechanisms of GRh2. Molecular docking, microscale thermophoresis (MST) and cellular thermal shift assay (CETSA) were employed to determine the binding between endoplasmic reticulum protein 5 (ERp5) and GRh2. RESULTS: We demonstrated that GRh2 exerted prominent impacts on retarding the growth and metastasis of breast cancer through boosting the cytotoxic function of NK cells, as validated by the elevated release of perforin, granzyme B and interferon-γ (IFN-γ). Mechanistical studies revealed that GRh2 was capable of diminishing the expression of ERp5 and GRh2 directly bound to ERp5 in MDA-MB-231 cells as well as on a recombinant protein level. GRh2 prevented the formation of soluble MICA (sMICA) and upregulated the expression level of MICA in vivo and in vitro. Importantly, the reduced lung metastasis of breast cancer by GRh2 was almost abolished upon the depletion of NK cells. Moreover, GRh2 was able to insert into the binding pocket of ERp5 directly. CONCLUSION: We firstly demonstrated that GRh2 played a pivotal role in augmenting NK cell activity by virtue of modulating the NKG2D-MICA signaling axis via directly binding to ERp5, and may be further optimized to a therapeutic agent for the treatment of breast cancer.


Assuntos
Ginsenosídeos , Células Matadoras Naturais , Neoplasias , Animais , Camundongos , Simulação de Acoplamento Molecular , Microtomografia por Raio-X , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...